

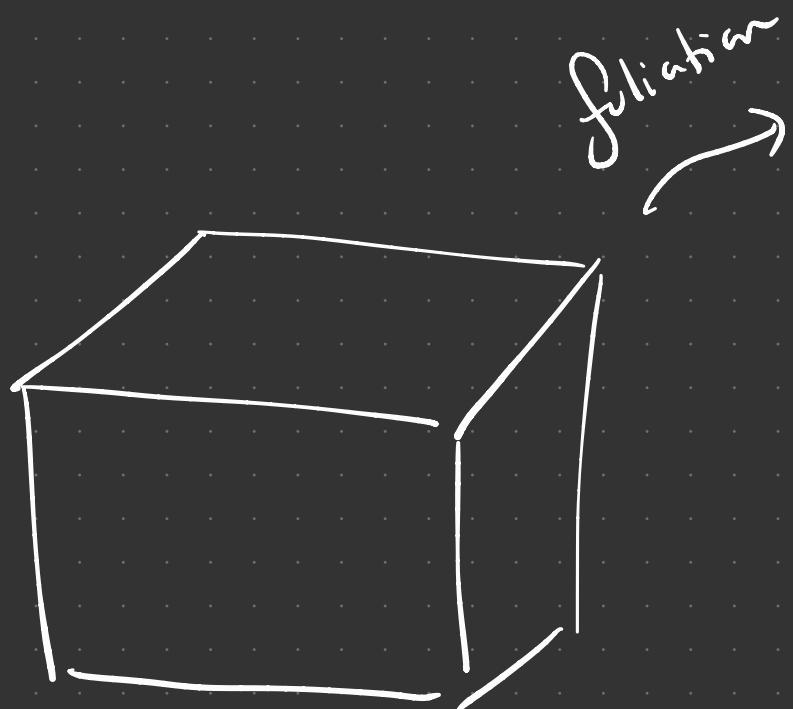
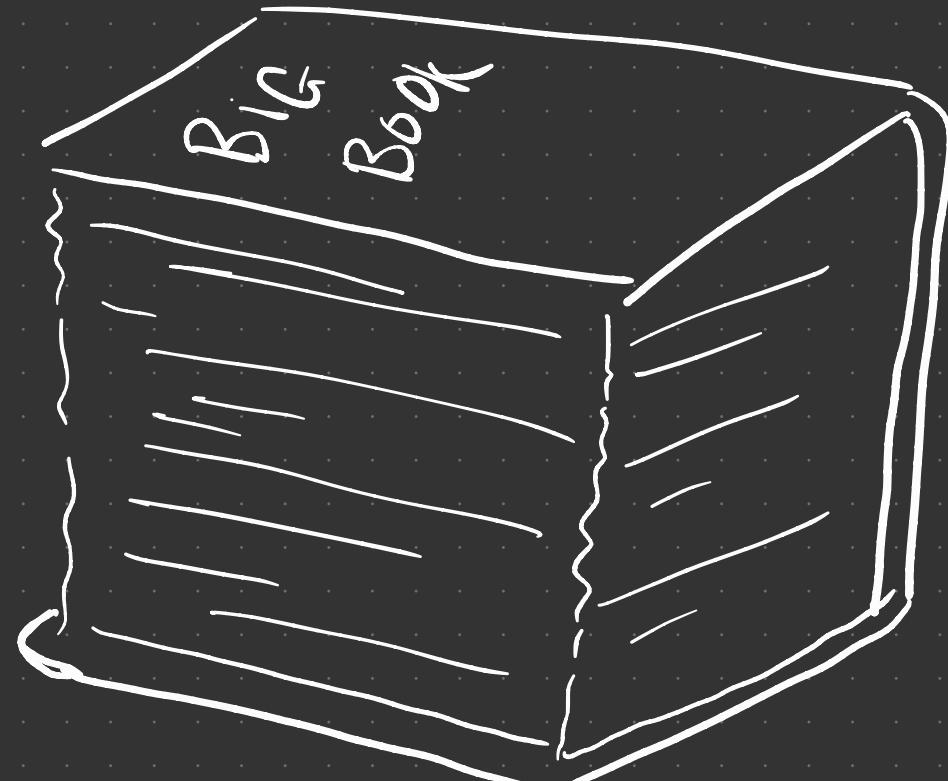
FOLIATIONS

Outline

- ① Defⁿ + Examples
- ② Codim 1 in 3 mflds
- ③ Tang / Transverse
- ④ MISC.

① Def " + Examples

Intuition :



Def": A foliation \mathcal{F} on

an n -mfld M ($\partial M = \emptyset$)

is a disjoint union $\coprod_{\lambda \in \Lambda} L_\lambda$

of connected k -mflds, for some

$0 \leq k \leq n$; (leaves)

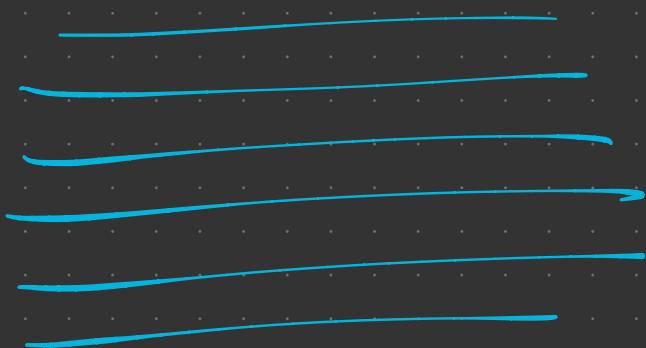
and a continuous bijection $f: \coprod_{\lambda \in \Lambda} L_\lambda \rightarrow M$

where M is covered by coordinate charts $\varphi: \overset{\sim}{\longrightarrow} \mathbb{R}^n$

s.t. $\forall \lambda \in \Lambda \quad \varphi(f(L_\lambda) \cap U) = \mathbb{R}^k \times X_\lambda$

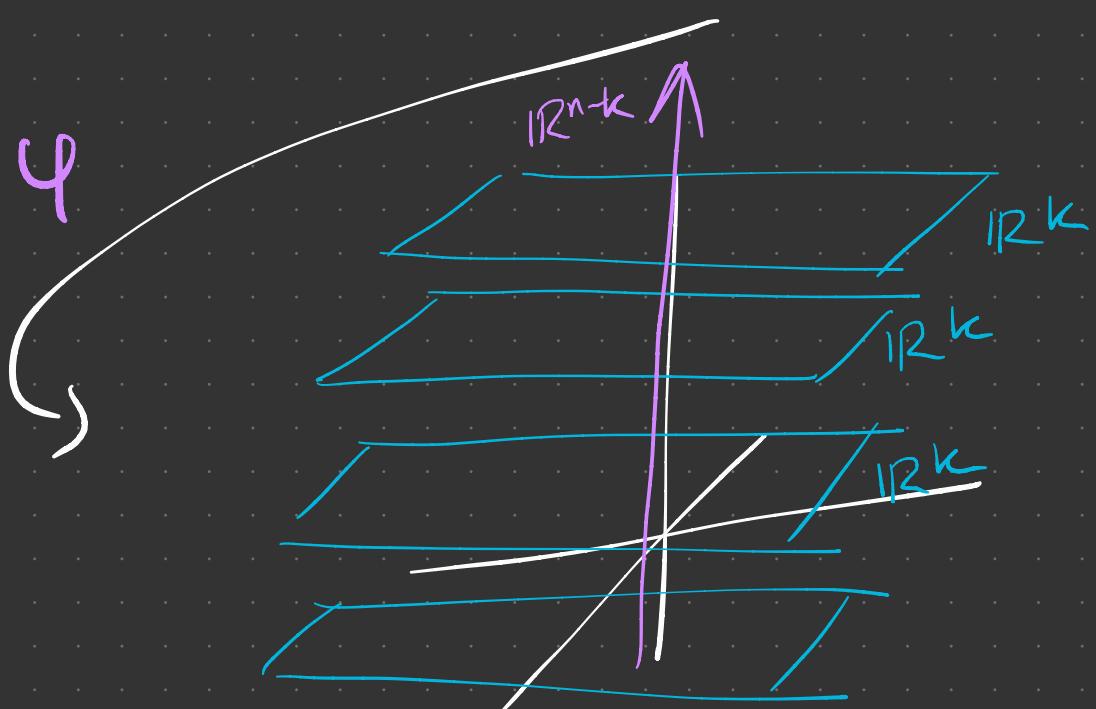
for some $X_\lambda \subset \mathbb{R}^{n-k}$ (maps)

CARTOON



f

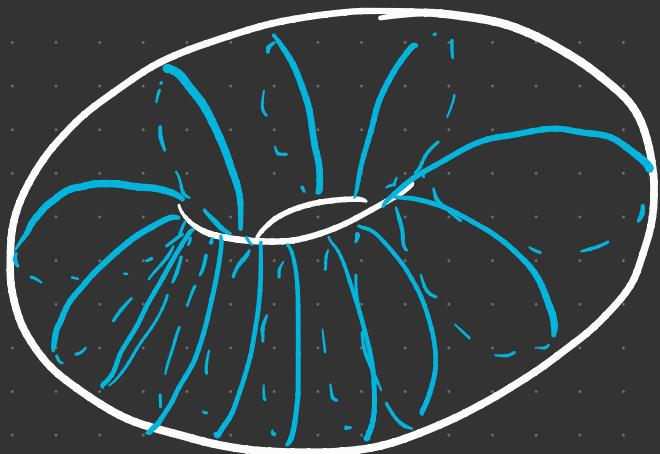
ΠL_x



\mathbb{R}^n

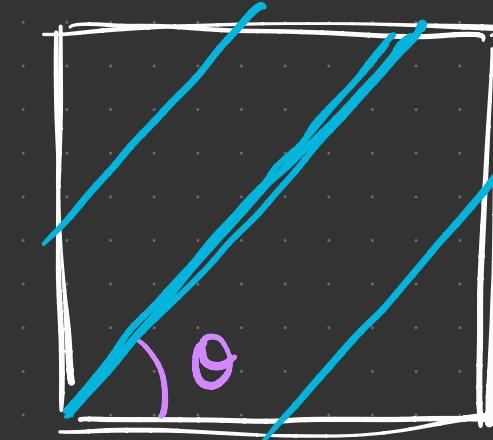
EXAMPLES!

Woo!



$S^1 \times S^1$

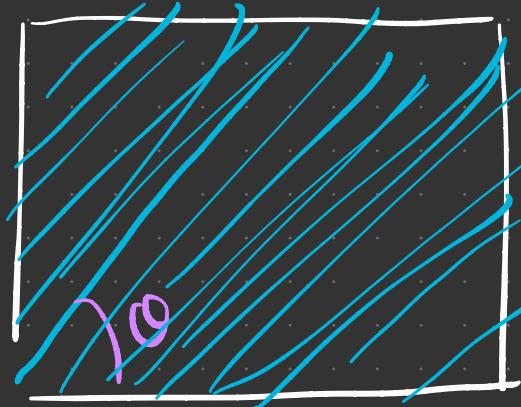
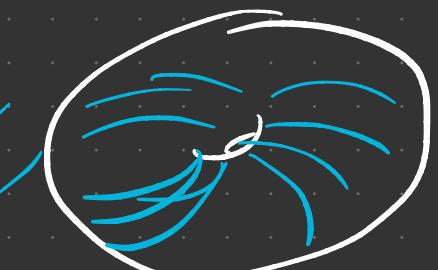
$F: S^1 \times \{k\}, k \in [0, 1]$



if $Q \in Q$

if $Q \notin Q$

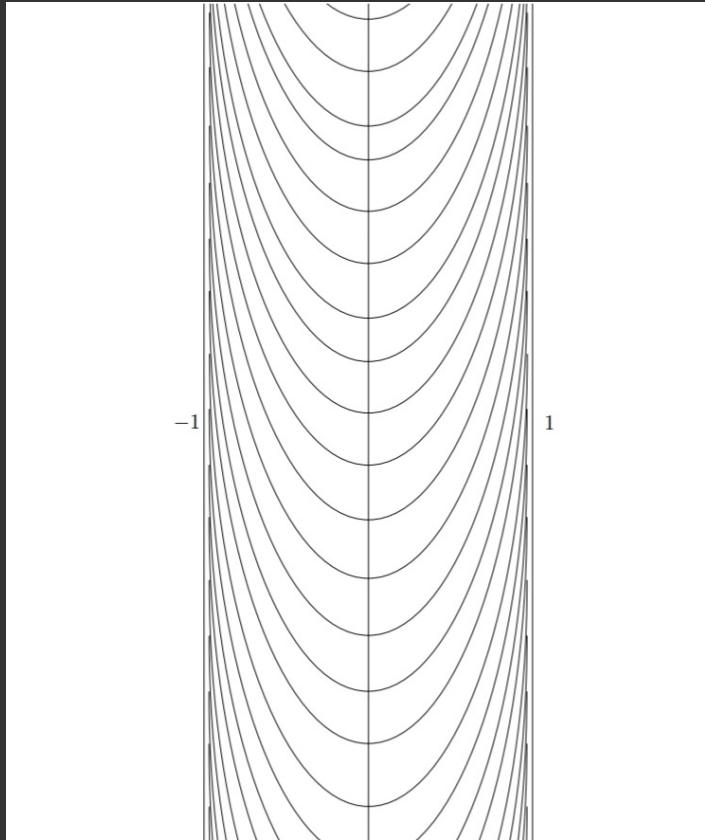
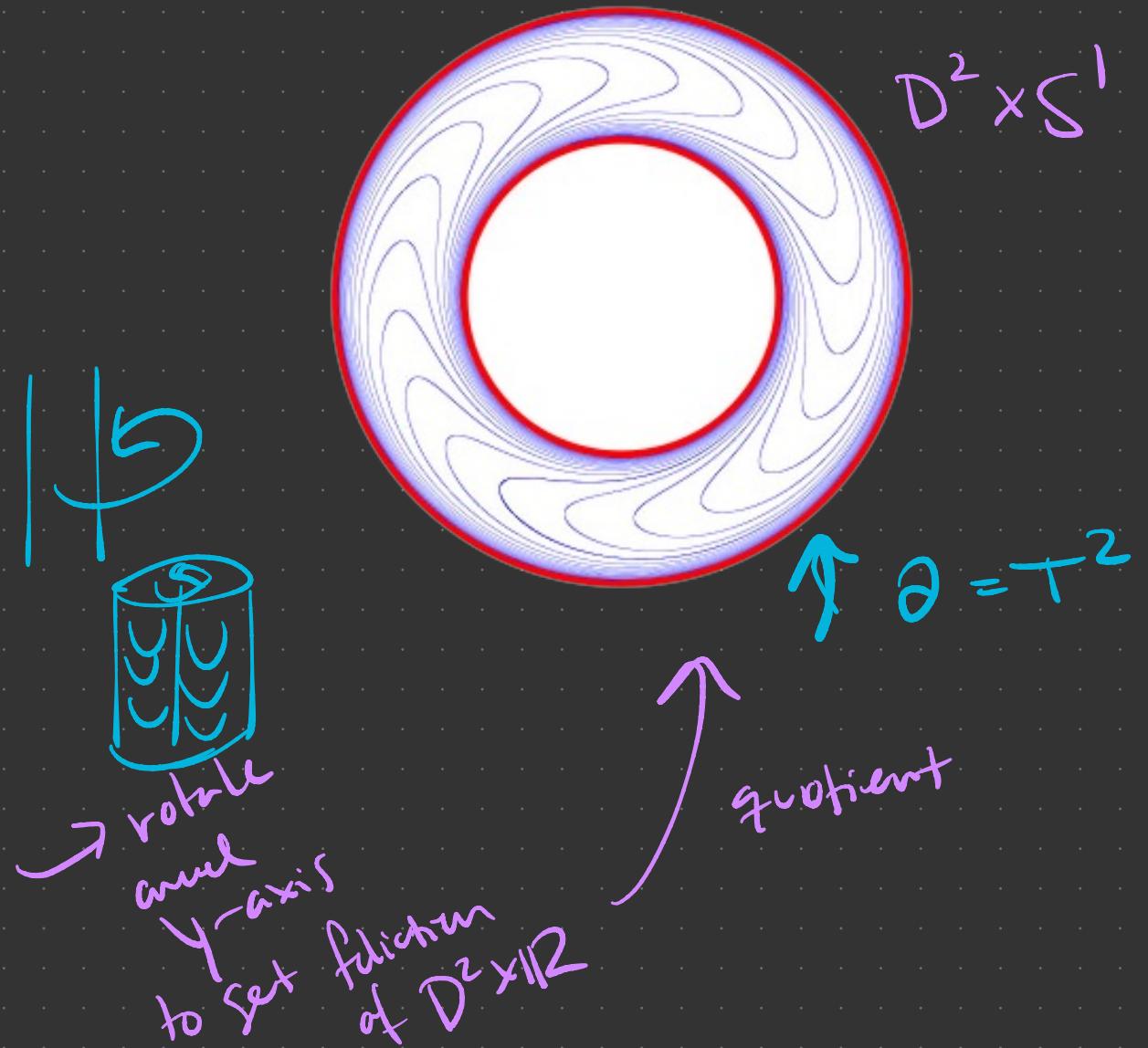
$[0, 1] \times [0, 1]$



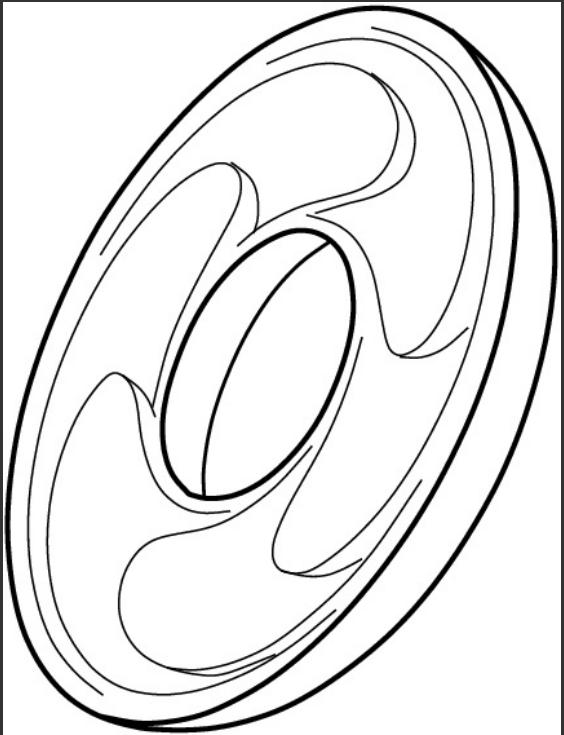
More examples:

- A Seifert Fibered Space has a codim 2 foliation where the leaves are circles
- Thm: If M is a closed 3-mfld w/ a foliation w/ leaves homeo to \mathbb{R}^2 , then $M \cong T^3$
- A fiber bundle $F \rightarrow M$ gives a foliation of M
 - ↓
 - Bwhere the leaves are the fibers

IMPORTANT EXAMPLE: REEB FOLIATION of

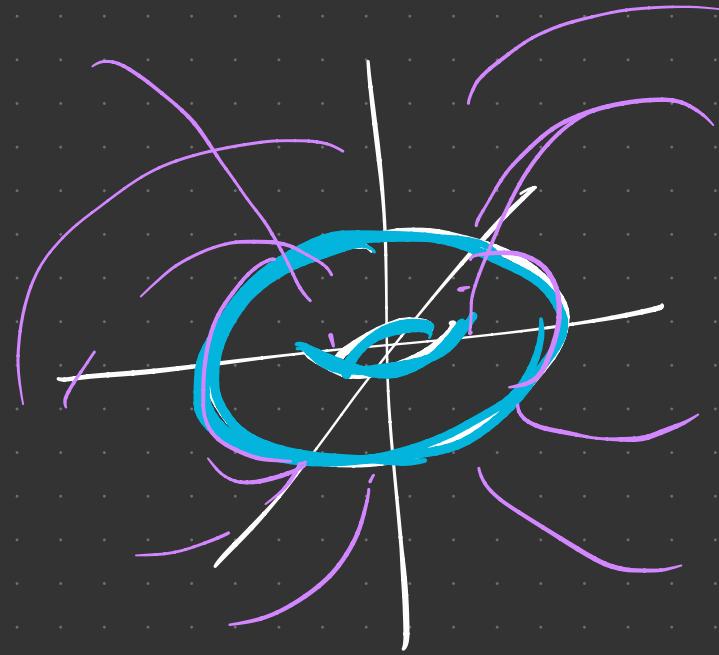


Foliation of $[-1, 1] \times \mathbb{R}$ w/ leaves homeo to \mathbb{R}



Note: Since S^3 has a splitting as 2 solid tori, the Reeb foliation gives us a codim 1-foliation.

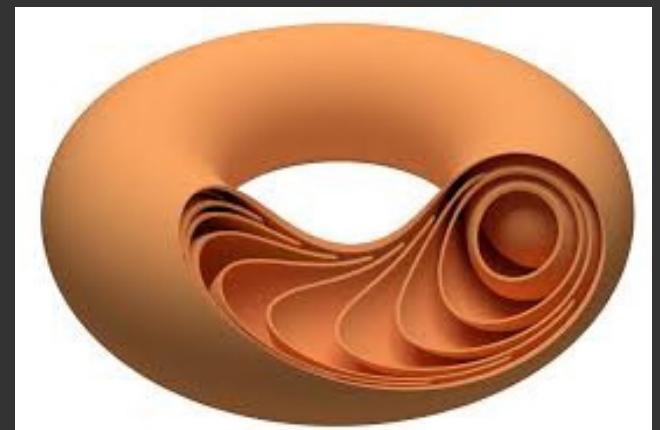
[CAMERON STORY HERE]



② Codim 1 foliations of 3-mflds

Thm: Every closed 3-mfld has

a codim-1 foliation.

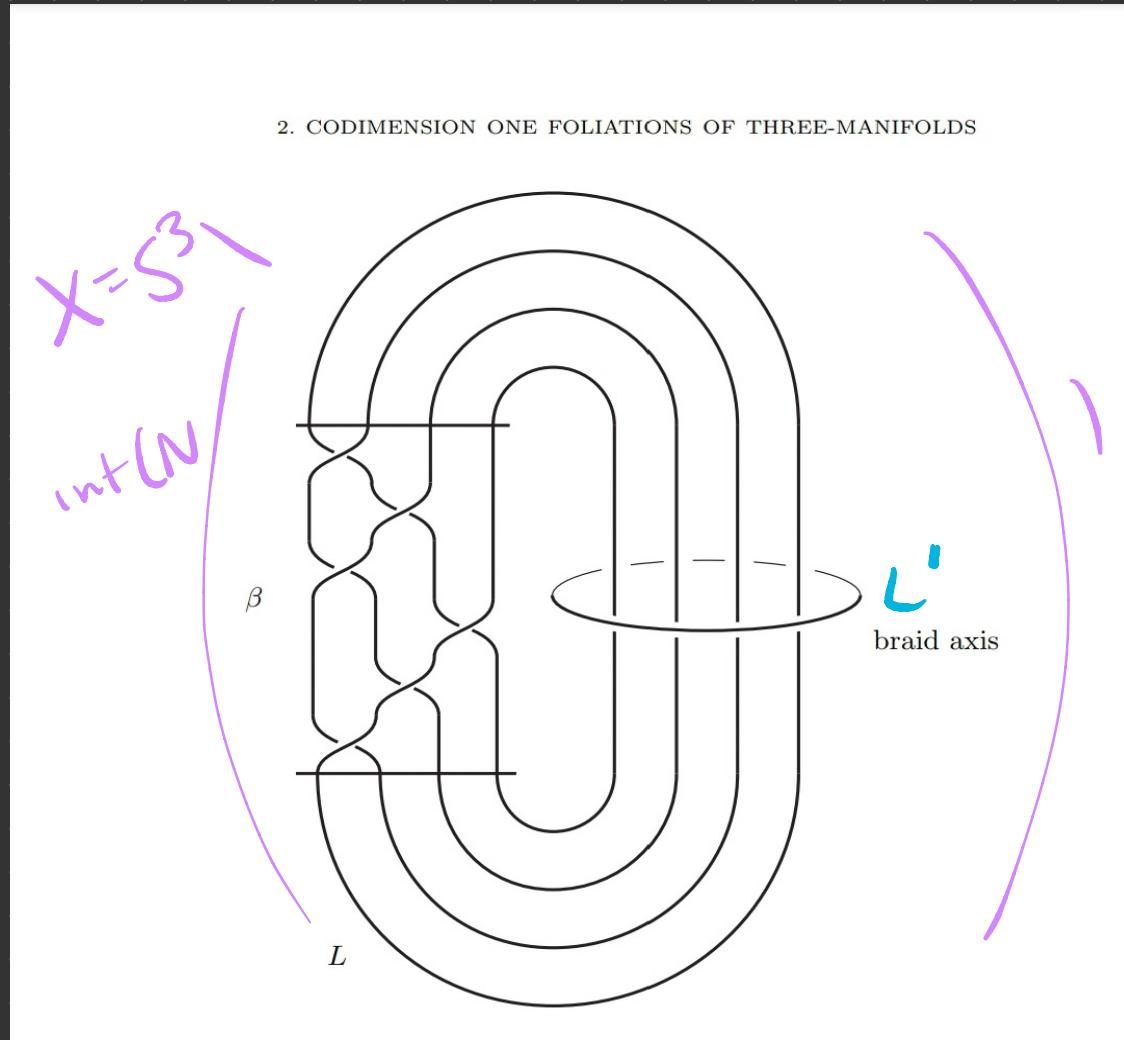


Sketch of Pf:

Need 2 facts :

- ① Thm[Lickorish-Wallace]: Every closed 3-manifl can be obtained by Dehn Surgery on a link in S^3
- ② Thm[Alexander]: Every link in S^3 is the closure of some braid

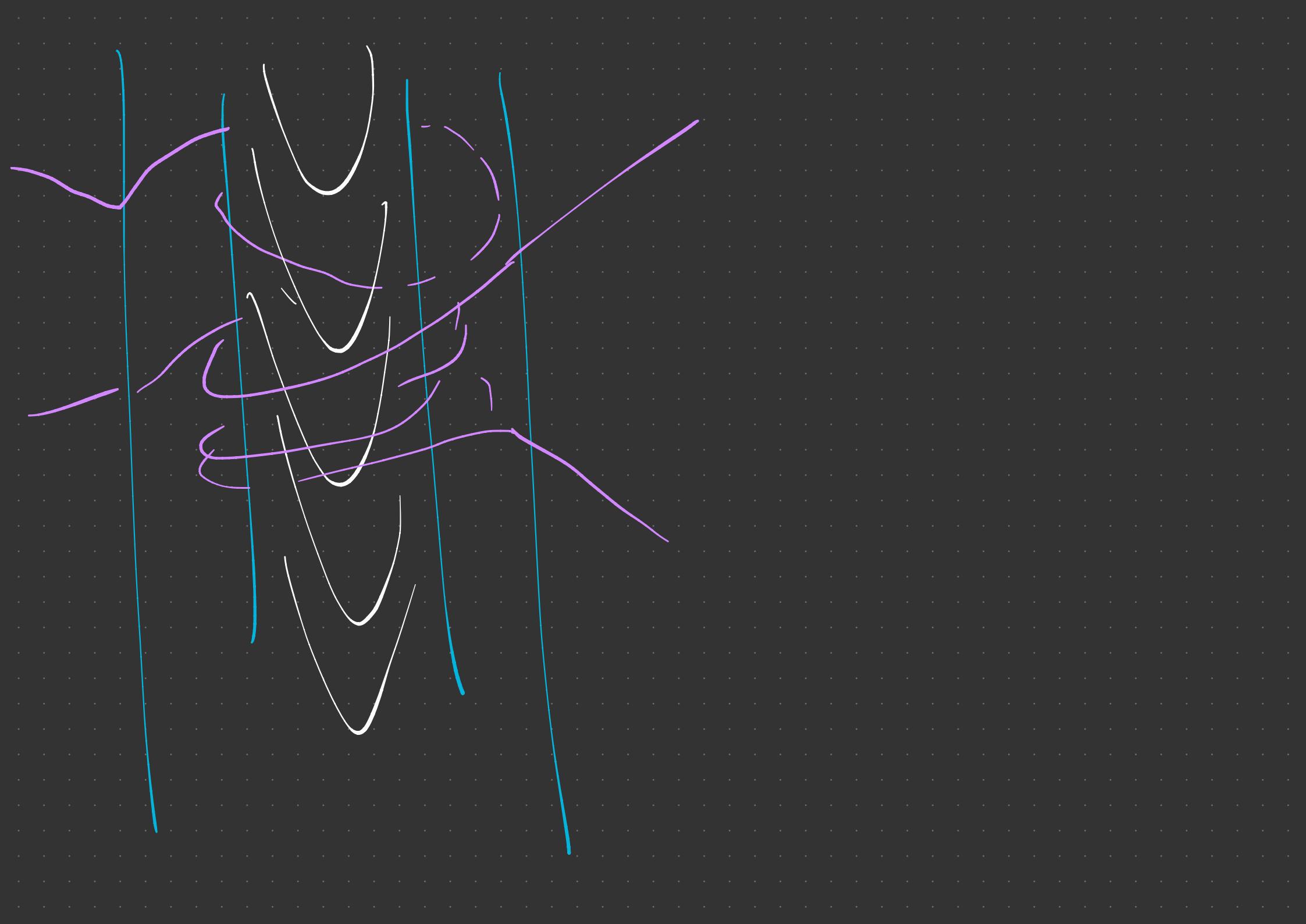
IDEA: M is surgery on a link L , and L is the closure of some braid β . $L' = L \amalg$ Branch Axis



- X is an F -bundle over S^1 , F is an n -punctured disk
- There is a codimension-1 foliation of X given by F ;

$$2 \times X = \coprod_{i=0}^m T_i$$
, m # components of L
- Spun the leaves and T_i to get a new foliation F'

$$M = X \cup (\coprod V_i)$$
 solid tori
w/ Reeb foliation



NOTice : There's a sense in which

- Codim 1 foliations of closed 3-mflds are
not special
- because Reeb foliations are

ALSO: If a mfld M has a (cooriented)

Codim 1 foliation, then $F: M \rightarrow M$

def'd by pushing off the leaves

↳ F has no fixed pts BUT is isotopic to id

↳ Lefschetz fixed pt Thm $\Rightarrow \chi(M) = 0$

GOAL: finding codim 1 foliations such that $\chi(M) = 0$!

(But then)

Thm [Thurston]: A closed n-mfld M has

Codim 1
foliation iff $\chi(M) = 0$.

Speaking of cool theorems that use foliations to give you important topological information...

Reeb's Stability Thm: If one leaf of a codim-1

foliation is closed and has finite π_1 ,

then all the leaves are closed and have

finite π_1 .

Special Case: Let M be a closed 3-mfd
w/ a foliation \mathcal{F} w/ a leaf homeo to
 $S^2 \cong \mathbb{RP}^2$.

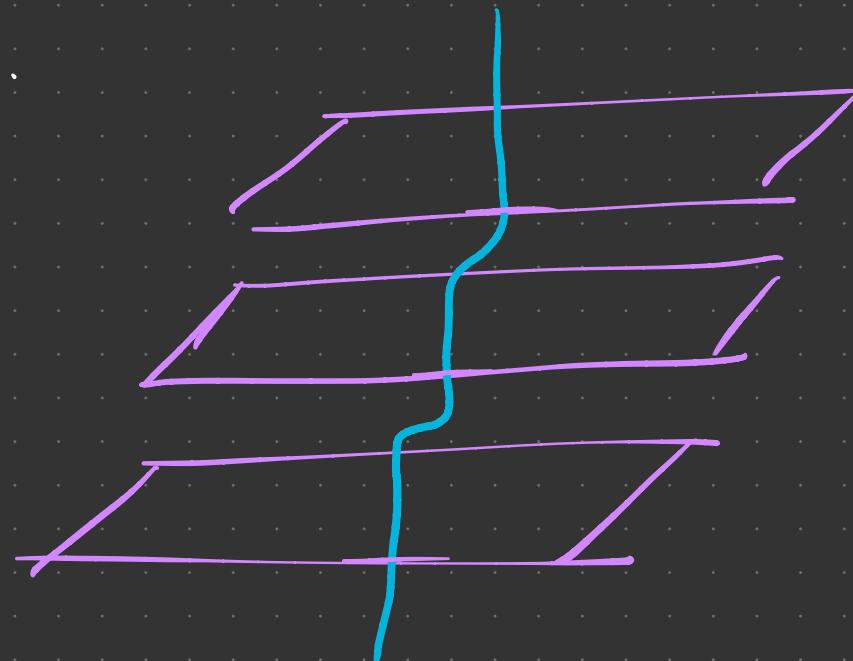
Then $M \cong S^2 \times S^1 \cong \mathbb{RP}^3 \# \mathbb{RP}^3$

③

Tangent | Transverse

Defⁿ: Let \mathcal{F} be a codim 1 foliation on M .

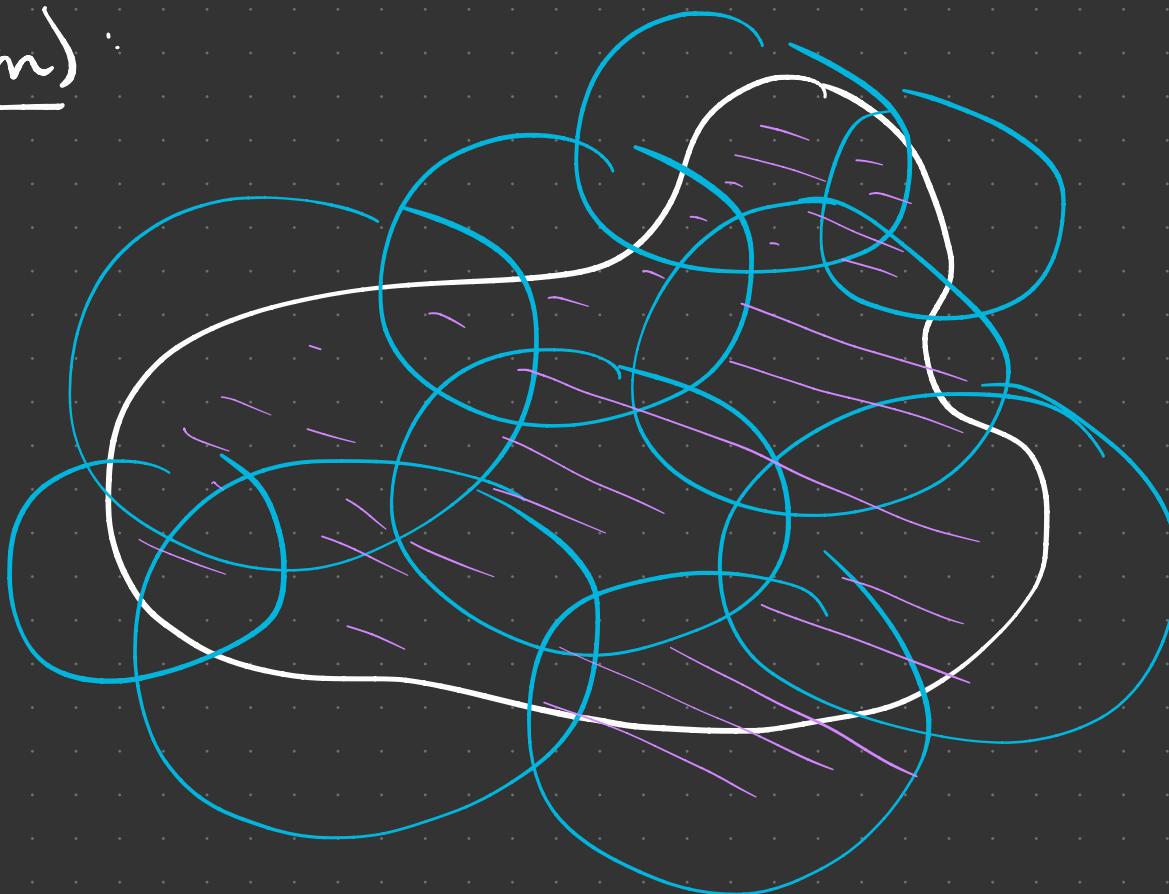
A transverse loop in M is a loop which is transverse to \mathcal{F} .



LEMMA: If M is compact then there is a transverse loop in M .

Pf (by exhaustion):

"Proceed
transversely."



Novikov's Thm : Let F be a Reebless foliation
on a closed 3-mfld not homeo to

$S^2 \times S^1$ nor $\mathbb{RP}^3 \# \mathbb{RP}^3$. Then

(1) for any leaf L of F , $\pi_1(L) \hookrightarrow \pi_1(M)$

(2) any transverse loop is essential

REM : "Reebless" as a condition makes codim 1 foliations
once again interesting!

Cor : Say F has a transverse loop γ .

γ^n is also transverse $\forall n \geq 1$.

$\hookrightarrow [\gamma]$ has inf. order in $\pi_1(M) \Rightarrow \pi_1(M)$ infinite

$\hookrightarrow \tilde{M}$ is non-compact \Rightarrow by (1) $\pi_1(\tilde{L}) = 1$

\Rightarrow Reeb Stability + our choice of M , all $\tilde{L} = \mathbb{R}^2$

$\Rightarrow \tilde{M} = \mathbb{R}^3 \Leftrightarrow M$ is irreducible

$\pi_1(M)$ is inf.

[Palmer's Thm]

Def: Let \mathcal{F} be a foliation of a closed 3-mfd M .

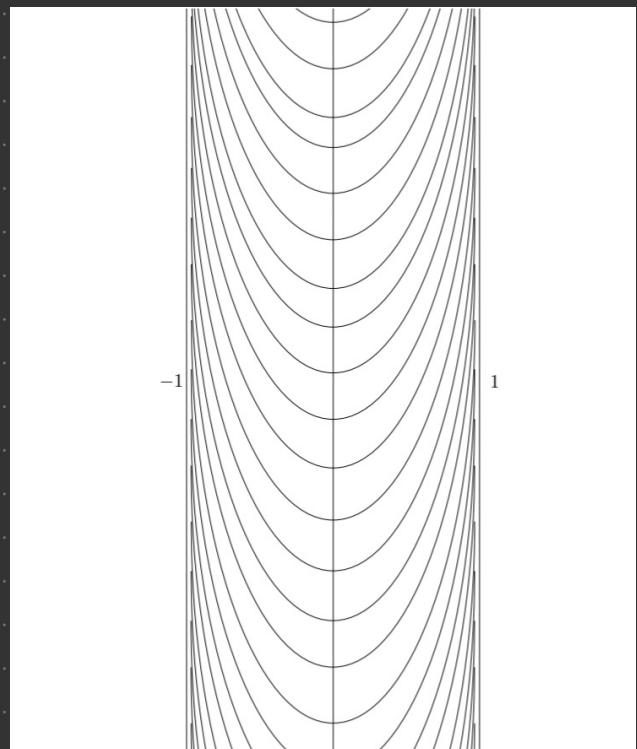
\mathcal{F} is taut if \mathcal{F} has a transverse loop γ

s.t. γ leaves L , $L \cap \gamma \neq \emptyset$.

REM: If we have Reeb foliations,

we can't have a transverse loop.

TAUT \rightarrow Reebless



TAUT \rightarrow Reebless

CONVERSE FALSE : $\overline{T_0}, \partial \overline{T_0} = S^1$

$X = \overline{T_0} \times S^1$; Spin $\overline{T_0} \times \{\text{pt}\}$ and ∂X

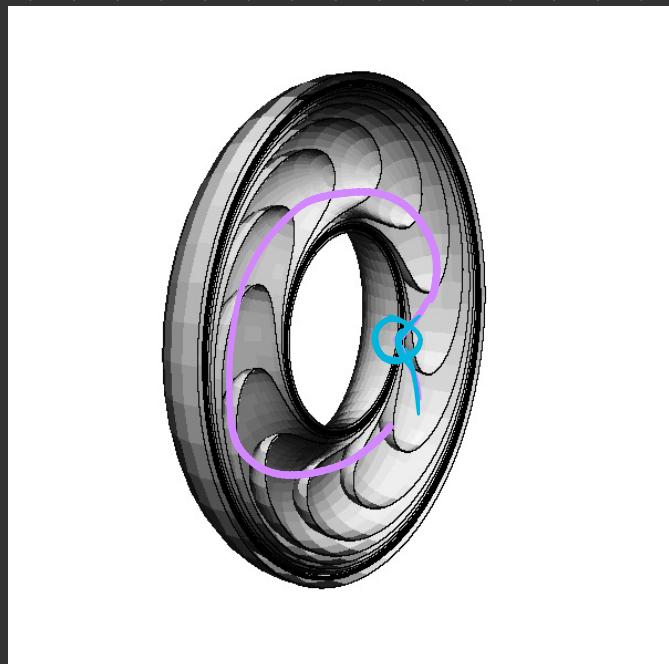
gives a foliation \widetilde{F} of X .

$M = X' \cup_{\partial} X \rightarrow F, F'$ give a foliation of M

$\overline{T} = \partial X = \partial X' \cap M$ is Reebless, but not Taut

Thm [Goodman]: If a foliation \mathcal{F} on a closed
orientable 3-manifl is not taut,

\mathcal{F} has a torus leaf



④

MISC.

Defⁿ : If \mathcal{F} has a codim 1 foliation on a closed n-mfld, we say \mathcal{F} is co-orientable if there is a consistent transverse orientation to the leaves of \mathcal{F} .

[Thm]: Let M be a closed n -mfld.

If M has a codim-1 foliation F ,

then $X(M) = 0$.

Pf: The foliations from our broad surgery construction
are coorientable \Rightarrow

In a double cover $\tilde{M} \rightarrow M$, \tilde{F} lifts to a coorientable
nonvanishing vector field $\Rightarrow X(\tilde{M}) = 2X(M) = 0 \quad \square$

($1/2$ -Space)

Conjecture : If M is a closed prime 3-mfld,

then M has a CTF iff

$\pi_1 M$ is left-adorable.

↪ Thm [Geba]: If M is a closed prime 3-mfld,

with $H_1(M)$ inf, M has a CTF.

(Solved for $H_1(M)$ inf).

That's all